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ABSTRACT

We examine a method for solving Liouville's equation,

* consisting of successive application of short time propagators.

* which are evaluated by using fast Fourier transforms. The method

is examined numerically by computing electronic absorption

spectra. The procedure is very efficient when applied to the

*study of short time dynamics of systems whose quantum degrees of

freedom are spatially localized.
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We propose in this article a method for solving the equation

I? IR (H p -pH)(1

at 1

which describes a variety of physical processes. If the positive

sign is taken and H a HU H is the Hamiltonian, Equation (1) is

the quantum Liouville equation (QLE) which gives the time

evolution of the non-equilibrium density matrix p(t). Taking the

negative sign and Hu M H, leads to Heisenberg equation for the

temporal evolution of an operator p(t). The form with different

Hamiltonians Hu 9 H Is useful for the computation of the
1

electronic absorption spectrum

i,.t -vZ(W) a (1/TT)Re ~fdt e e tTrp(t) .(2)

0

Here

p(t) -exp{-iH tI/t) p(o)exp(iH t/'d (3)
UI

and
p(O) =p.(r) exp{-pH )/Z1  (4)

* with

r
= Tr~exp(-pH1)

S..
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The two Hamiltonians

H 2 and H 2
H /2m)V r +0 u = /2m)Vr +V u()

(5)

represent .the nuclear motion in the "upper" and "lower" electronic

states and p() is the transition dipole moment between these

states. V (R) and Vu(R) are the potential energy surfaces of the

two states and E0 is the energy gap between them. The Equation

(2) is a rearrangement of the usual expression that gives the

absorption spectrum in terms of the Fourier transform of the

dipole-dipole correlation function. Since p(t) defined by Eq. (2)

satisfies equation (1) (with the plus sign) we can calculate

* absorption spectra by solving Eq.(1) with the initial condition

given by Eq (4).

Thus it should be clear that the development of an efficient

method for solving Eq. (1) is of importance for non-equilibrium

statistical mechanics (transport theory and thermal rates) and the

spectroscopy of thermalized molecules (i.e. prepared in an oven or

imbedded in a condensed medium held at constant temperature).

We propose and test here a method which applies to the

present problem Ideas developed by Fleck, Morris and Feit (FMF)5

for solving Maxwell's equations.

~~~~~~~~... ............ ................ ,-:....-......._.* * . .- ' *- *_..2".
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ii.. THE METHOD~nu OF SOLUTION

In coordinate representation equation (1) can be written as

2 2 2 2 2 2ih ap(r,r';t)/3t ( -(h /2m)(3 /3r )+ (h~ /2m)(3 /3r' )+

V (r) - V (rl)} p(r,r';t) (6)

For a very short time T we can write

p(r,r';t+ ) W W(rT)W (r'; )p(r~r';t) (7)

where
2 22 2W (r,r) =exp((i~rh /4m)Vr exp{-iTV (r)/?h}exp{(iThL 24)u/4r)V r

(8)

is the "split propagator" used by FMF.5  W,(r';T) is obtained from

111

For n small time steps we have

p(r,r';nT) [ W (r,'r)W (r',T)J n p(r,r';O)=
Un-1

(G~~r'T) U u(r;)U(r;T)*] G(r,r';T)p(r,r';O) (9)

where 1

G(r,r'; r) =exp{(iPhT/4m)(V7-V7,r (10)

and

r 2
U (r,T) =exp{(ihr/2m)Vr)exp{-iTV (r)/?d. 11

U (r;T)*is obtained from Eq. (11) by replacing V (r) with

V r', with 7 and i with -i.1 r r
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We compute p(r,r';nT) by using Eq. (9). The more difficult

part is the calculation of the effect of the operators containing

exponentials of the form expr(iTh /2m)V r To illustrate the .:'

procedure we show in detail the calculation of

X(r) r Uu(r,*)f(r,r') , (12)

where f(r,r') is a known function and U (r,T) is given by Eq.
U

Using Eq. (11) and simple manipulations based on the

representation theory we can write

X(r) = fdk 2dr 1<r2 1k2> exp{-i( k2/2m)}<k 2 r1 >exp-iTV(r1 )/1}..

(13)f (r r ,r' ) :] ..

Here we have used the momentum representation in which the

Laplacian is diagonal. The price paid for this easy

diagonalization is that we must perform the two integrals over dr

and dk Fortunately, since <k2 tr > and <rlk 2 > are plane waves,

the integrals are a Fourier transform and an inverse Fourier

transform, which can both be efficiently performed by using a fast

Fourier transform (FFT) routine.6

This method can be used for computing the effect of the

operators G and U. Repeated application for n small time steps Tl

as indicated in Eq. (9), gives the evolution of p(r,r';t) from 6. 2

p(r,r';O) to p(r,r';nr).

'. -- - -"i':'i'.' .-''' -. ... " - .. , ':.... .- . . . . .... ..... . . . . ... .. _.. . . . . . . ' " '-
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The number of operations and the magnitude of the errors can

be analyzed to some extent, to establish the conditions under

which this method is most efficient. The error made by using the

"split propagator" for a short time T, is of order -r if we were

to use p(r,r';n ) = (U u(r,T)U e(r';r)*)np(r,r';O), like in the path -

7 2
integral theory the error would be of order T Furthermore, if

the dependence of p(r,r';t) on r and r' can be adequately

described on a N point grid, then each FFT requires, roughly,

Nln2N operations per coordinate; the equations discussed here have

two coordinates per degree of freedom. The number of grid points

N is L/1 where L is the length over which p(r,r';t) is localized,

and 1 is the shortest length scale over which the p(r,r';t)

changes. Thus for each time step the number of operations

2required to perform the necessary FFTs is 2(Nln 2N) The

calculation of U also requires N multiplications with

exp(-iVu(r)rT/), one for each grid point. The exponentials exp{-

iTV(r)/h} are calculated once, at the beginning. Since two such

multiplications are required per time step, the total number of

such operations is 2N. The same number of multiplications are

2 2required for the terms exp(-ih k /2m}, where k are the grid
n n

points in the momentum space; these exponentials are also computed

once, at the beginning, since the grid points are not changed

during the calculation.

The total number of operations per time step is thus

Z

.-. .o
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2(NIn 2 N) + 4N. The number of time steps is determined by the

physical characteristics of the problem at hand. In the case of

electronic absorption spectrum, which is used for illustration in

this article, thc time step must be smaller than 2Tr/6, where 8 is

the width of the Franck-Condon envelope, and the length of time

that p(t) must be propagated is of order -1 , where i as the width8
of the narrowest line that we want to resolve.-

%.*
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III. The Calculation af Electronic Absorption Spectra

To test the method described here we have applied it to the

problem of electronic absorption by a model diatomic molecule

whose ground and excited state potential energies are harmonic

oscillators of equal frequency wo 0.01 a.u. 2.72 meV 2176

cm , whose equilibrium positions are displaced by a length 6x =

0.33 a.u. - 0.16 A, and whose reduced mass is that of a proton.

We chose this problem because the exact result is known.9

Since the spectrum and the Hamiltonians have all the features

expected in a realistic problem, the model provides an adequate

test of the method of computation.

The calculation starts with the assumption that the

transition dipole p(r) is independent of r. There is no

additional difficulty in using a function for g(r); we used a

constant since exact results are available for that case. The

equilibrium density matrix. exp(-SHl}/Z 1 was calculated in

coordinate representation by using a FFT method proposed by

Hellsing, Nitzan and Metiu.1  This provides the exact initial

value p(rr';t=0), = <rlexp(-pH1 )Ir'>/Z 1  This is propagated by

using (9) and the method described above. The spectrum E(w) is

obtained from Eq. (2). Since the band edge is determined by the

energy gap E between the states (i.e. the electronic excitation
0

energy) we can shift the spectrum arbitarily on the frequency

scale without causing confusion.

The length of time T for which we need to propagate

p(r,r';t) is set by the magnitude of y appearing in Eq. (2). Here

. . . ... .°
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7 is the rate of the slowest process causing the decay of the

upper state amplitude, and it could be the natural line width,11

the rate of a radiationless transition, predissociation, or photo-
r

dissociation in an additional degree of freedom whose dynamics is
4,12

not explicitly included; ' one can also think of exp(-yt) as a
6

"filter function" used to avoid the numerical difficulties

associated with computing 6 functions numerically. In the latter

case y must be smaller than the transition frequencies which one

intends to resolve when the spectrum is computed. We use

throughout the paper yT = 5 with y = 0.028 a.u. (y/wO  0.28).

The dependence of the spectrum on the number of spatial grid

points is illustrated in Fig. 1. The result obtained with 32 grid

points is exact, that for 16 points is reasonably accurate, while

the use of eight points leads to serious errors.

The sensitivity to the number of spatial grid points appears

because the height of each peak and the total width of the

spectrum is determined by the magnitude of the Frank-Condon

factors, which are wave function overlaps. A poor spatial grid

will result in erroneous high energy Franck-Condon factors, since

the highly excited wave functions appearing in them have a larger

number of spatial oscillations and these are not well described on

a coarse grid. When an insufficient number of grid points is used

the low frequency part of the spectrum is usually not as bad as

the high frequency one.

In Figure 2 we show the dependence of the spectrum as a

function of the number of time steps. The results obtained by

o.%.r
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using 1000 time steps are exact, those using 25 steps are adequate

and the error made by this dramatic lowering of the number of

steps occurs mainly at the low intensity side of the spectrum,

where the experiments are also likely to be less accurate.

In Figure 3 we show the temperature dependence of the

spectra. The increase in temperature causes the growth of the hot

bands and a corresponding decrease in the peaks which are present

at zero temperature.

IV DISCUSSION

Both actual calculations and estimates of the number of

operations indicate that the present method of solving the

Liouville equation is very efficienct if: (a) the density matrix,

in coordinate representation, is spatially localized; (b) the

density matrix changes with position over a sizable space scale;

(c) the duration of the dynamic process of interest is short (in

spectroscopy this means that the Franck-Condon envelope is broad);

(d) the required time step is small (in spectroscopy this means

that the ratio between the width of the narrowest line and the

width of the envelope is large); (e) the problem has few quantum

degrees of freedom.

Even though a theory based on Liouville's equation is more

general than one provided by the Schrodinger equation, such a

formulation is not always required, nor is it generally advisable.

In cases when kBT is comparble to the excitation energy of the

quantum system, it is computationally more efficient to propagate

the few states which are thermally populated and average the

.*p... .. ,..-



results with a quantum Boltzman factor. This happens because the

dimenisionality of the Liouville equation is twice that of

Schrodinger equation,

When we deal however with molecules imbedded in a condensed

* medium, whose molecules are held at constant temperature and are

* propagated by classical mechanics, the situation Is not so clear

cut.

Under these circumstances the initial conditions for the

*quantum degrees of freedom are determined In two steps: First we

use the Monte Carlo method to establish the position of the atbms

of the medium and to compute the potential energy of molecule in

*the presence of the medium; then we determine the quantum density

matrix of the molecule for these potentials. Under these

conditions the molecular wave functions are much more difficult to

* determine than the equilibrium density matrix. Therefore, since

the initial state is defined by the density matrix the subsequent .A

*time evolution (caused by the electromagnetic field and the*

classical motion of the molecules of the medium) and the spectrum

corresponding to it, must be calculated by solving the Liouville

equation. The same is true for rate or transport processes.

The reason why the present method might play an important

*role in future developments is that it is so efficient that such

calculations - which require the calculation of the quantum

9volution of the molecule's density matrix for each Monte Carlo

configuration of the molecules in the medium -are possible if the

problem has one or perhaps two degrees of freedom which are
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-. spatially localized, and the process is completed in a reasonably

short time.
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FIGURE CAPTIONS
|I

Fig. 1. The dependence of the computed spectrum on the number

of points N in the spatial grid. Full line N=8;

dotted lines N=16; dashed line N-32. We have used

1000 time steps, w 0o/k T 12.5, wo  272 meV = 0.01

a.u., I/wo 0.28.

Fig. 2. Spectra computed with various time steps: full line,

1000 steps; dashed line, 100 steps; and dotted line,

25 steps. The spatial grid has 64 points. The

parameters are those used in Figure 1.

Fig. 3. Spectra at various temperatures. The parameters are

those used in Fig. 1.
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